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Spring Break or Heart Break? Extending
Valence Bias to Emotional Words
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Abstract

Ambiguous stimuli are useful for assessing emotional bias. For example, surprised faces could convey a positive or negative
meaning, and the degree to which an individual interprets these expressions as positive or negative represents their “valence
bias.” Currently, the most well-validated ambiguous stimuli for assessing valence bias include nonverbal signals (faces and scenes),
overlooking an inherent ambiguity in verbal signals. This study identified 32 words with dual-valence ambiguity (i.e., relatively high
intersubject variability in valence ratings and relatively slow response times) and length-matched clearly valenced words
(16 positive, 16 negative). Preregistered analyses demonstrated that the words-based valence bias correlated with the bias for
faces, rs(213)¼ .27, p < .001, and scenes, rs(204)¼ .46, p < .001. That is, the same people who interpret ambiguous faces/scenes as
positive also interpret ambiguous words as positive. These findings provide a novel tool for measuring valence bias and greater
generalizability, resulting in a more robust measure of this bias.
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Decision making under uncertainty is ubiquitous in daily life

(e.g., financial decision making is fraught with risk and ambi-

guity; Chen & Epstein, 2002; Ellsberg, 1961; see Platt & Huet-

tel, 2008, for a review) and is particularly pervasive in social

behavior (see FeldmanHall & Shenhav, 2019, for a review).

For instance, uncertainty may arise when judging another’s

trustworthiness (King-Casas et al., 2005), gauging their

thoughts (Flagan et al., 2017), or gleaning emotion from social

signals (Neta et al., 2009). Indeed, humans readily glean emo-

tional meaning from social signals including facial expressions

(Ekman et al., 1987), language (Lindquist, 2009), and situa-

tional context (Frijda, 1958; Neta et al., 2013). Notably,

although some signals can be clearly categorized along the

valence dimension: good or bad, approach or avoid (Baumeis-

ter et al., 2007; Krieglmeyer et al., 2010), others are less clear.

Ambiguity arises when a particular social signal represents

both positive and negative outcomes. For example, a wink can

signal an attempt at social affiliation (e.g., a show of support;

positive), an unwanted flirtation (negative), or it can simply

mean that someone has something in their eye (neutral);

depending on the context in which this signal is encountered

(e.g., a job interview, a first date), our ability to resolve these

ambiguities can have widespread consequences on our lives.

A growing body of work has explored stable, trait-like indi-

vidual differences in interpretations of emotional (dual-

valence) ambiguity (Neta et al., 2009). For instance, surprised

facial expressions predict both positive/rewarding (e.g., win-

ning the lottery) and negative/threatening outcomes (e.g., stock

market crash) and thus are a useful tool for characterizing indi-

vidual differences in valence bias or the tendency to interpret

emotionally ambiguous signals as positive or negative. The

valence bias is consistent with multiple theories in social and

personality psychology suggesting that situational and personal

factors influence how we interpret ambiguous social stimuli.

Much of this work has focused on contextual, state factors that

influence how we process ambiguous information (e.g., self-

fulfilling prophecies, Snyder & Swann, 1978; category and

stereotype-based expectancies, Trope & Thompson, 1997). For

instance, just as stereotypes preserve mental resources and

speed social inferences (Macrae et al., 1994), the valence bias

serves as a lens through which individuals might quickly and

efficiently categorize ambiguity. Such biases in impression for-

mation are self-perpetuating (Snyder & Swann, 1978; Trope &

Thompson, 1997), meaning that, in the context of valence bias,

a tendency to interpret ambiguity as negative will likely lead to

an increased search for confirmatory (negative) evidence.

These effects likely contribute to the stability evident in one’s

valence bias (Neta et al., 2009). Indeed, ambiguous information
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is often taken as confirmatory evidence, reinforcing stereotypes

and beliefs rather than refuting them (Todd et al., 2012).

In addition, variability in valence bias, similar to other trait-

like factors, powerfully influences behavior in myriad ways

(Allport, 1937). For example, a more positive valence bias is

associated with greater well-being, by way of less depressive

symptoms (Petro et al., 2019), self-reported anxiety (Neta

et al., 2017), stress reactivity (Brown et al., 2017), and more

physical activity (Neta et al., 2019). Interpersonally, prelimi-

nary evidence suggests a positive bias is associated with greater

empathy (Neta et al., 2009) and may facilitate ingroup affilia-

tion and cooperation (Lazerus et al., 2016). Alternatively, a

more negative bias may contribute to group conflict or out-

group derogation (e.g., there is a negativity bias in perceptions

of out-group motives; Lees & Cikara, 2020).

To date, valence bias has largely been studied using nonver-

bal cues such as facial expressions (surprised, morphed faces;

Beevers et al., 2009; Neta et al., 2009) and scenes (Neta

et al., 2013). Although these nonverbal social signals are

important for communication and rich with emotional mean-

ing, there is another important social signal for communicating

emotion that has been relatively overlooked: language. Lan-

guage is a critical component of emotion (Barrett et al.,

2007) and interpersonal communication (McGlone & Giles,

2011), and its usage provides insight into both social (e.g., lin-

guistic intergroup bias; Maass et al., 1989) and personality psy-

chology (Nunnally & Flaugher, 1963; Pennebaker & Graybeal,

2001). However, like many other communicative signals, lan-

guage is fraught with ambiguity (MacDonald et al., 1994; Pian-

tadosi et al., 2012). For example, some words with different

meanings sound (homophones; e.g. “break” and “brake”) or

look the same (homonyms; e.g., “pen” for writing and “pen” for

animals); others take on different parts of speech (e.g., “break”

is both a noun and a verb) and even refer to opposing emotional

valence signals (e.g., “spring break” and “heart break”).

Despite this pervasiveness of ambiguity in language, previ-

ous work has focused on arousal-based rather than valence-

based ambiguity. For example, Mathews and colleagues have

demonstrated a negativity bias using words that could have a

negative or neutral meaning (e.g., “die”), examining one’s ten-

dency to interpret the word as having high or low arousal (i.e.,

negative or neutral interpretations). Other work has explored

ambiguity in which the alternative meanings are positive or

neutral (Grey & Matthews, 2000; Eysenck et al., 1991; but see

Joorman et al., 2015). However, the work on valence bias relies

on dual-valence ambiguity, examining one’s tendency to inter-

pret these stimuli as having a more positive versus negative

meaning. Thus, the development of a set of words with dual-

valence ambiguity would provide both a novel tool for measur-

ing valence bias and also a more robust and generalizable

measure than the one that relies only on nonverbal signals.

The primary goal of this work is to determine the impact of

valence bias in processing linguistic ambiguity, thus demonstrat-

ing that responses to ambiguous words can be leveraged to char-

acterize bias in response to ambiguity in social signals, more

broadly. To that end, we first identified a set of words with

dual-valence emotional ambiguity (i.e., valid positive and nega-

tive meanings). We relied on the same principles used in identify-

ing ambiguous scenes (Neta et al., 2013), operationalizing

dual-valence ambiguity as words with greater intersubject varia-

bility (i.e., standard deviation) and slower reaction times in

valence ratings (i.e., more time might be required to make a

valence decision when multiple response alternatives are valid).

Upon identifying these words (and length-matched clearly

valenced words) in an exploratory pilot, we conducted a preregis-

tered experiment to compare valence bias for words to that

evoked by ambiguous faces and scenes. Specifically, we preregis-

tered our prediction that we would see evidence for dual-valence

ambiguity across all three stimulus categories. We also preregis-

tered a prediction that the valence bias would generalize across

categories, operationalized as a positive correlation between

valence bias for each of the three stimulus categories, controlling

for age and gender. That is, we predicted that the same individuals

that tend to interpret ambiguous faces and scenes as positive also

show more positive interpretations of these words.

Pilot

Method

Participants

Amazon’s Mechanical Turk (MTurk) Workers were invited to

participate in an eligibility screener that included demographic

questions and an initial word rating block (US$0.20 total), with

the option to earn a bonus (US$2.05) if they met the requirements

and completed the entire study (total compensation US$2.25).

Eligibility was based on Workers indicating that they were over

18 years old, English was their native language, and they had no

history of psychological or neurological disorder. The initial

word rating block consisted of 50 trials (described below),

including five instances of the word “POSITIVE” and five

instances of the word “NEGATIVE”; eligibility was based on

correctly rating these 10 words with at least 80% accuracy. We

expected a sample of 100 participants would result in sufficient

variability to identify ambiguous words but collected data from

slightly more than 100 participants, expecting to remove some

participants due to data quality issues associated with online data

collection. Of the 151 who completed the screener, 119 met the

eligibility requirements and responded accurately in the screen-

ing block (n ¼ 6 ineligible, n ¼ 26 below 80% accuracy), and

103 chose to complete the entire study (Table 1).

Stimuli

We compiled a set of 59 “ambiguous” words that we expected

might have two distinct valence interpretations: one clearly pos-

itive and one clearly negative. To identify clearly positive and

negative words, we created a list of words used in both Warriner

et al. (2013), which provided valence and arousal ratings of each

word, and the English Lexicon Project (Balota et al., 2007),

which provided lexical features of each word, including length

and frequency (Lund & Burgess, 1996), number of phonemes,
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number of syllables, number of morphemes, lexical decision

reaction time and accuracy, and naming reaction time and accu-

racy. These lexical characteristics were selected because they

cover the “general fields” provided by the English Lexicon Proj-

ect (length and frequency) but also morphological and phonolo-

gical features associated with word length. We then eliminated

words with a mean arousal rating greater than 1 standard devia-

tion (SD) away from the mean arousal of the 59 ambiguous

words. We classified positive words as those with a mean valence

> 7 on the 1–9 scale used by Warriner et al. (2013); negative

words had mean valence < 3. To ensure that all words shared

similar lexical characteristics, we eliminated any words from

the master list whose lexical characteristics did not fall within

the minimum and maximum values for the 59 ambiguous

words. The final list of pilot words included 629 total words:

59 ambiguous, 267 positive, and 303 negative words.

Procedure

All tasks were created and presented using Gorilla Experiment

Builder (Anwyl-Irvine et al., 2019), and the study was only

accessible to participants using a computer (not a phone or

tablet) within the United States. After giving informed consent,

participants answered demographic questions and were shown a

brief self-guided instructional walkthrough of the task before

completing the screener. Using a random seed, we selected 20

positive and 20 negative words from the pilot list to include in

the screener task for all participants. These 40 words, along with

five instances of the word “POSITIVE” and five instances of the

word “NEGATIVE” (total of 50 words) were presented ran-

domly, one at a time, each following a 250 ms fixation cross.

Each word remained on screen until the participant rated it as

positive or negative by pressing “A” or “L” on their keyboard

(key pairing randomized across participants). If no response was

made after 2,000 ms, a reminder appeared (e.g., “Please respond

as quickly as you can! A¼ POSITIVE. L¼ NEGATIVE”). Par-

ticipants who rated the words “POSITIVE” and “NEGATIVE”

with less than 80% accuracy were compensated for their time but

not invited to continue the study. This strict cutoff for rejecting

participants immediately after the screener (Chandler et al.,

2013) allowed for a small margin of error but was necessary

given data issues in online samples (e.g., uncontrolled environ-

ment). The remaining 589 words from the final pilot list were

randomly presented across 10 blocks of 59 words, in capital let-

ters in plain black font on a white background, using the same

button-press procedure as the screener block.

Analysis

All calculations described in this section were scripted using R

(Version 3.6.0; R Core Team, 2019), and summary data are

available at osf.io/b2trn. Trials with a reaction time less than

250 ms (n ¼ 191) or larger than 3 SDs above the group mean

(n ¼ 204) were removed before data analysis. Reaction times

below 250 ms were removed because this is a lower threshold

for simple reaction time tasks (e.g., pressing a key immediately

upon attending to a stimulus; Posner, 1980) and implausible for

more complex (valence discrimination) tasks. This cutoff is

reasonably conservative, given concerns associated with online

data collection (e.g., “bots” or automated responding), and is in

line with recent reaction time-based research using Gorilla

Experiment Builder (Anwyl-Irvine et al., 2019). After remov-

ing these 395 trials, we removed one participant that lost

25% of their total trials based on reaction time (all other parti-

cipants lost no more than 4% of trials). Thus, a total of 238

trials were removed from the final sample prior to data analy-

sis, M (SD) ¼ 2.33 (4.01) per participant. To examine valence

ratings, we calculated the percentage of participants who rated

each word as negative. For example, if half of the participants

rated the word “break” as negative, then the percent negative

ratings would be 50%. Mean reaction time was also calculated

for each word.

Pilot

Results

Visual inspection of the valence ratings across subjects

revealed two distinct groups of words with high response con-

sensus: one group with a clearly negative meaning (n¼ 20, per-

cent negative ratings > 75%) and another group with a clearly

positive meaning (n¼ 21, percent negative ratings < 25%; Fig-

ure 1A). We removed the two words “POSITIVE” and

“NEGATIVE” from each list (given that these were included

only as attention checks), resulting in a set of 19 words with

a clearly negative meaning and 20 words with a clearly positive

meaning.

Previous work has shown that ambiguous stimuli are associ-

ated with longer reaction times in a forced-choice valence cate-

gorization task (Neta et al., 2013). Figure 1B shows that

responses to 40 words were rated more slowly than the rest

(suggesting dual-valence ambiguity), surpassing an average

reaction time threshold of 875 ms. These words were also

between 25% and 75% in percent negative ratings (i.e., not

Table 1. Demographics for Pilot and Study 1.

Demographic

Pilot (n ¼ 103) Study 1 (n ¼ 227)

M SD Range M SD Range

Age 37.15 10.60 22–67 44.85 14.44 18–76
Gender 55% female (N ¼ 56), 45% male (N ¼ 47) 53% female (N ¼ 121), 47% male (N ¼ 106)
Race 4 Asian, 6 Black, 88 White, 2 Other, and 3 Unknown 15 Asian, 20 Black, 175 White, 5 Other, and 12 Unknown
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clearly positive or negative valenced). These 40 words were

considered for inclusion in a final list of ambiguous words.

We removed eight words for a variety of reasons: Four were

outliers in normative ratings (Warriner et al., 2013) or lexical

characteristics (Balota et al., 2007), relative to other ambiguous

words (“ABUNDANT” had low accuracy, “INHERIT” had

higher valence rating, “FACELESS” had a low SD in valence,

and “HEADSTONE” had lower frequency); one word was

removed because of conceptual redundancy (“COURTROOM”

was removed because “COURT” was on the list); two were

removed because we could not identify both a clear positive

and negative definition (“COSMIC” and “RECEIVE”); and

one was expected to prime a more negative interpretation given

recent economic events (“RECESSION”). Thus, the final list

included 32 ambiguous words.

Because the existing valence bias task (with faces and

scenes) uses an equal number of ambiguous (50%) and clearly

valenced (25% positive, 25% negative) stimuli, we removed

three negative and four positive words with the longest reaction

times, resulting in a final list of 16 negative and 16 positive

words with the fastest reaction times. The final lists of ambig-

uous and clear words (see Supplemental Table S1) did not dif-

fer in length, t(62)¼ �1.05, p¼ .30, d¼ 0.26, but did differ in

reaction time, Welch’s t(55) ¼ �15.81, p < .001, d ¼ 3.95;

ambiguous, M (SD) ¼ 916.51 (28.26); and clear, M (SD) ¼

777.40 (40.96). Further, there was a significant difference in

frequency, such that ambiguous words were more frequent than

clearly valenced words, t(62) ¼ 2.08, p ¼ .04, d ¼ 0.52.

Although unexpected, this difference is not surprising given

that ambiguous words must have multiple definitions (at least

one positive and one negative) and thus are likely to have

greater use in the English language.

Study 1

Method

Participants

A new sample of Amazon’s MTurk Workers were invited to

participate. Power analysis (G*Power) indicated a necessary

sample size of at least 134 participants for a bivariate linear

regression (a ¼ .05; power ¼ 95%) to detect a small effect size

(r ¼ .3; Faul et al., 2009). After providing informed consent

and completing the same eligibility screener (but without the

word rating block) used in the pilot (US$0.10), eligible partici-

pants completed a valence bias task (described below;

US$2.15). Of the 389 eligible, 260 workers chose to complete

the entire study (total compensation US$2.25). Participants

who responded to less than 75% of trials after reaction time

cleaning (n ¼ 6; described below) or did not correctly rate the

Figure 1. Percent negative ratings and mean reaction time for all words. (A) Nineteen words were interpreted as negative by more than 75% of
the participants (top of the graph), and 20 were interpreted as positive by more than 75% of the participants (bottom of the graph; excluding the
words “POSITIVE” and “NEGATIVE”). (B) Forty words had mean reaction times above 875 ms (black line), suggesting dual-valence ambiguity.
For an interactive figure that shows the corresponding word for each point, visit osf.io/b2trn.
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clearly valenced stimuli on more than 60% of trials for two or

more stimulus categories (faces, scenes, and words; n ¼ 27)

were removed. This more liberal accuracy cutoff, compared

to the pilot, was taken from previous research (Neta et al.,

2019) as it allows for some flexibility in ratings (e.g., a picture

of a puppy is typically rated as positive but perhaps not by

someone who is afraid of dogs). Participants who were inaccu-

rate for only one stimulus category were retained, but any

dependent variables—ratings and reaction times—in that sti-

mulus category were treated as missing in the analyses. Further,

a minimum of 60% accuracy on clearly valenced trials was

needed to ensure an accurate representation of valence bias,

consistent with previous work (Neta et al., 2013; Neta & Wha-

len, 2010). The final sample included 227 participants.

Stimuli

Six task blocks (faces, scenes, and words) were used to assess

valence bias. As in previous work (Neta et al., 2013), each face

and scene block included 12 ambiguous images and 12 clear

images (six positive and six negative). The facial expressions

were selected from the NimStim (Tottenham et al., 2009) and

Karolinska Directed Emotional Faces (Lundqvist et al., 1998)

sets, and the scenes were selected from the International Affec-

tive Picture System (Lang et al., 2008; see Supplemental Table

S1). Each word block included 16 ambiguous and 16 clear

(eight positive and eight negative) words identified in the pilot.

All words were presented in capital letters in plain black font

on a white background.

Procedure

As in the pilot, the task was administered using Gorilla Experi-

ment Builder (Anwyl-Irvine et al., 2019) and was only accessi-

ble to participants using a computer in the United States.

Participants were randomly assigned to a pseudorandom (coun-

terbalanced) presentation order of blocks of faces, scenes, and

words. Within each block, stimuli were presented randomly for

500 ms, preceded by a 1,500 ms fixation cross. If participants

did not make a response within 2,000 ms, no response was

recorded and the task advanced to the next trial. Participants

responded by pressing either the “A” or “L” key on their key-

board (response keys counterbalanced across participants).

Valence bias for each stimulus category was calculated as the

percentage of ambiguous trials in which the participant rated

the item as negative out of the total number of trials for that

condition (excluding omissions; Neta et al., 2009). For exam-

ple, if a participant rated 80% of ambiguous words as negative,

that individual’s valence bias for words would be 80%.

Analysis

Preregistration (osf.io/z3k2g) and deidentified data with analysis

scripts (osf.io/b2trn) are available via Open Science Framework.

All data cleaning, analyses, and visualizations were completed

using R (Version 3.6.0; R Core Team, 2019). Before calculating

valence bias, trials with reaction times less than 250 ms

(n ¼ 582) or larger than 3 SDs above the participant mean

(n ¼ 469) were removed. As in the pilot, after removing these

1,051 trials, we removed six participants who lost 25% or more

of their total trials based on nonresponse or reaction time (all

other participants lost no more than 18.75% of trials, and a large

majority—i.e., 94% of participants—lost no more than 5% of

trials). Thus, a total of 623 trials were removed from the final

sample prior to data analysis, M (SD) ¼ 2.45 (2.50) per partici-

pant. Additionally, only participants’ first response to each sti-

mulus presentation was retained for analysis. We completed

our preregistered analysis of valence bias (percent negative rat-

ings) as well as an unregistered analysis of reaction time to con-

firm reaction times were slower for ambiguous than clear

stimuli, across the stimulus categories. (Note that reaction time

analyses were conducted as additional confirmation of dual-

valence ambiguity—i.e., longer reaction times for ambiguous

than clear stimuli—and to replicate findings from the Pilot but

were overlooked at the time of preregistration.) We used an anal-

ysis of variance (ANOVA) approach but capitalized on the flex-

ibility of linear mixed effects models (i.e., the ability to handle

missing data and robustness to violations of normality; Knief

& Forstmeier, 2018) rather than the traditional repeated mea-

sures ANOVA. However, these models do not have an agreed

upon method for calculating effect sizes (see Rights & Sterba,

2019, for a discussion). Full information maximum likelihood

estimation was used to account for any missing data. Partial cor-

relations were used to assess whether valence bias in response to

ambiguous words was related to that of the faces and scenes

while controlling for gender and age. Where applicable, non-

parametric tests (Spearman’s correlations) were used.

Results

Manipulation Check

Replicating and confirming the ambiguity of our new word set,

we found that ambiguous words showed greater intersubject

variability in valence ratings (i.e., larger SD) than clearly

valenced words, t(31) ¼ 16.47, p < .001, d ¼ 4.35; ambiguous,

M (SD)¼ 0.45 (0.05), and clear, M (SD)¼ 0.24 (0.04). Further,

ambiguous words were rated more slowly than clear words,

t(31) ¼ 11.89, p < .001, d ¼ 2.99; ambiguous, M (SD) ¼
814.90 (26.03), and clear, M (SD) ¼ 718.77 (37.21).

Valence Ratings

A linear mixed effects model with fixed within-subjects factors

of valence (negative, positive, and ambiguous) and stimulus

(faces, scenes, and words) revealed a significant main effect of

valence, F(2, 448) ¼ 3,690.50, p < .001, such that negative sti-

muli were rated as more negative than ambiguous stimuli, which

were rated as more negative than positive stimuli (ps < .001; neg-

ative M [SD] ¼ 89.30 [10.29]%; ambiguous M [SD] ¼ 48.10

[21.59]%; positive M [SD] ¼ 5.74 [8.29]%; Bonferroni-

corrected significance threshold¼ .02). There was also a signif-

icant main effect of Stimulus, F(2, 429) ¼ 13.65, p < .001, such

Harp et al. 5



that faces were rated as more negative than scenes and words

(ps < .001), but scenes were not different from words (p ¼ .18;

Bonferroni-corrected significance threshold ¼ .02). Finally,

there was a significant Valence � Stimulus interaction,

F(4, 860) ¼ 25.83, p < .001, such that the effect of valence

reported above was significant for all three stimulus categories

(ps < .001), but there were also stimulus-related differences

within each valence condition. Specifically, for the ambiguous

condition, faces were rated as more negative than scenes and

words (ps < .001), and scenes were trending towards more neg-

ative than words (p ¼ .009; Bonferroni-corrected significance

threshold ¼ .006). For the negative condition, words were rated

as more negative than both faces and scenes (ps < .001), and

faces were marginally more negative than scenes (p ¼ .007).

There were no stimulus-related differences in the positive condi-

tion that surpassed the Bonferroni-corrected threshold (ps > .07).

Reaction Time

A similar valence (negative, positive, and ambiguous) and sti-

mulus (faces, scenes, and words) linear mixed effects model

revealed a significant main effect of valence, F(2, 456) ¼
279.08, p < .001, such that participants took longer to rate

ambiguous than negative images, which took longer than rat-

ings of positive images (ps < .001; Bonferroni-corrected signif-

icance threshold ¼ .02). There was also a significant main

effect of stimulus, F(2, 425) ¼ 108.93, p < .001, such that par-

ticipants took longer to rate words than scenes, which took lon-

ger than ratings of faces (ps < .001; Bonferroni-corrected

significance threshold ¼ .02). Finally, there was a significant

Valence � Stimulus interaction, F(4, 866) ¼ 17.15, p < .001,

such that the effect of valence described above was significant

for all three stimulus categories (all ps < .001), and the effect of

stimulus described above was also significant or trending in all

valence conditions (ps < .001 except between scenes and words

for negative valence, p ¼ .01; Bonferroni-corrected signifi-

cance threshold ¼ .006).

Comparing Valence Bias Across Stimulus Categories

To address one of the primary goals of the project (i.e., the gen-

eralizability of valence bias), we compared valence bias for

faces, scenes, and words within participants while controlling

for age and gender. Replicating previous work (Neta et al.,

2013), there was a positive relationship between ratings of

ambiguous faces and scenes, rs(198) ¼ .35, p < .001. Notably,

we found a similar positive relationship between faces and

words, rs(213) ¼ .27, p < .001, and between scenes and words,

r(204) ¼ .46, p < .001 (Figure 2A–C).

Discussion

We identified a set of words with dual-valence ambiguity,

along with length-matched clearly valenced—positive and neg-

ative—words. Notably, we showed that the valence bias as

measured with nonverbal signals (faces and scenes) extends

to verbal signals (words): the same participants who interpret

ambiguous faces and scenes as having a positive meaning also

interpret the ambiguous words as positive. This generalizability

provides a more stable, robust measure of valence bias that

extends across the specific features of the stimuli. Specifically,

the valence bias is not exclusive to nonverbal social signals

(faces and scenes), but rather our responses to ambiguity are

broadly relevant to social decision making, ranging from per-

son perception (e.g., faces) to language (single words).

The development and validation of this new stimulus set

provides both a novel method for measuring valence bias and

numerous advantages for future research. One advantage is the

uniformity and simplicity of the stimuli; facial expressions are

complex displays subject to interindividual variability in facial

features (brow and mouth position) and perceiver biases

(stereotypes), which influence judgments of the face (Freeman

& Johnson, 2016; Oosterhof & Todorov, 2008). This set of

ambiguous words is uniquely useful in its lack of salient fea-

tures related to group membership that are inherent to the faces

and some scenes (e.g., sex, age, race, and ethnicity). Another

benefit of the words, particularly for online studies, is that task

performance is less vulnerable to effects of screen resolution or

other differences that might prove problematic for more com-

plex images. Finally, the word stimuli are more translatable for

other modalities (e.g., auditory stimuli).

Having said that, one inherent limitation of these word sti-

muli is that they are not similarly suitable for very young popu-

lations (i.e., children that cannot read) nor will they readily

generalize to non-English speaking samples or even to non-

American, English-speaking cultures, given different word

usage. One interesting avenue for future research would be

extending this work to identify dual-valence ambiguity in other

languages and cultures. Another potential limitation of this

work more broadly is related to well-known flaws with reaction

time measurement via browser- or hardware-related differ-

ences in online studies. Although Gorilla Experiment Builder

implements techniques to mitigate browser-related differences

(e.g., JavaScript functions to obtain high-resolution timestamps

of approximately 1 ms; Mozilla, 2019), there remain poten-

tially problematic differences in the hardware’s refresh rate—

but note that typical refresh rate for USB hardware is 125 Hz

(Anwyl-Irvine et al., 2020).

Although we found important generalizability in valence bias

across stimulus categories, there were some differences. For

example, ambiguous faces were interpreted as more negative

than scenes and words (consistent with previous work using

faces and scenes; Neta et al., 2013; Neta & Tong, 2016). In con-

trast, among the clearly negative stimuli, words were interpreted

as more negative than faces or scenes. Although it is unclear

what is driving these effects, there may be less flexibility in

interpretations of clearly negative words (e.g., “evil” or

“deadly”) compared to clearly negative (angry) faces. For exam-

ple, schadenfreude—pleasure at another’s misfortunes—could

account for positive interpretations of some angry faces (Cikara

& Fiske, 2013) as could perceiver biases (stereotypes; Freeman

& Johnson, 2016; Oosterhof & Todorov, 2008).
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Reaction times were important for identifying (Pilot) and

later confirming (Study 1) the ambiguous nature of our stimuli;

as expected, reaction times were slower for ambiguous than

clear stimuli. These analyses also revealed insights into

stimulus-related differences in processing ambiguity. For

instance, reaction times for faces were faster than for scenes

and words, perhaps because scenes are more complex (more

information to encode; Neta et al., 2013), and words require

semantic processing (Petersen et al., 1988; Posner et al.,

1988), but faces are processed relatively quickly and automat-

ically (Bar et al., 2006; Willis & Todorov, 2006). These reac-

tion time differences are consistent with divergent processing

routes, for example, work using magnetoencephalography has

demonstrated faster processing for faces than scenes (Sato

et al., 1999). These findings are also consistent with some beha-

vioral observations (e.g., in a matching task, images of faces

are matched faster than scenes; Hariri et al., 2002) but not oth-

ers (e.g., in a recognition task, words were recognized faster

than faces; Kolers et al., 1985). Future work may be needed

to disentangle these potentially important stimulus-related dif-

ferences, especially given the relationship between reaction

time and valence bias (i.e., slower reaction times are associated

with a more positive bias; Neta & Tong, 2016).

Altogether, this work builds on a growing literature aiming

to understand individual differences in valence bias, including

research that has linked valence bias to important individual

differences in physical (Neta et al., 2019) and psychological

well-being (Brown et al., 2017; Neta et al., 2017; Petro et al.,

2019). There are also clear implications for theories in social

psychology, exploring the link between valence bias and con-

textual factors that influence how we navigate our complex

social world (Snyder & Swann, 1978; Todd et al., 2012; Trope

& Thompson, 1997). Although the present work has focused

primarily on the link to personality (Allport, 1937) in examin-

ing stable and generalizable individual differences in bias,

future work can and should expand on these findings in the

social realm. Notably, this new method for assessing valence

bias has the potential to further our understanding of the perva-

sive uncertainty inherent to social behavior (FeldmanHall &

Shenhav, 2019) and may prove to be a critical contributor to

interactions across social boundaries (e.g., group affiliation/

conflict, linguistic intergroup bias).

Figure 2. Comparing valence bias across stimulus categories. Note. After regressing age and gender on the percent negative ratings in each
condition, we found positive associations between ratings of ambiguous (A) faces and scenes, rs(198) ¼ .35, p < .001, (B) faces and words,
rs(213) ¼ .27, p < .001, and (C) scenes and words, r(204) ¼ .46, p < .001.
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