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1.  INTRODUCTION

The brain is organized into intrinsically connected func-
tional networks that can be reliably identified during resting-
state functional magnetic resonance imaging (fMRI; Fox 
et al., 2005; Snyder & Raichle, 2012). Despite being char-
acterized at rest, these brain networks are also associated 
with task performance in relevant functional domains 

(Cohen & D’Esposito, 2016; Yeo et al., 2015). For example, 

the default mode network (DMN), which consists of regions 

in medial prefrontal, medial and lateral parietal and tempo-

ral cortex, is associated with functions including self-

referential processing, autobiographical memory, and 

social cognition (Davey et al., 2016; Menon, 2023; Mevel 

et al., 2013; Spreng et al., 2009). Other commonly described 
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ABSTRACT

The brain is organized into intrinsically connected functional networks that can be reliably identified during resting-
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the lifespan. Critically, a more positive valence bias was related to lower segregation of the default mode network 
(DMN), due to stronger functional connectivity of the DMN with CO and, to a lesser extent, the ventral attention net-
work (VAN) in all participants. In contrast to this overall segregation effect, in participants over 39 years old (who tend 
to show a positive valence bias), bias was also related to weaker connectivity between the DMN and Reward net-
works. The present findings indicate that specific interactions between the DMN, a task control network (CO), an 
emotion processing network (Reward), and, to a weaker extent, an attention network (VAN), support a more positive 
valence bias, perhaps through regulatory control of self-referential processing and reduced emotional reactivity in 
aging. The current work offers further insight into the functional brain network alterations that may contribute to affec-
tive well-being and dysfunction across the lifespan.
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networks include task control networks such as the 
cingulo-opercular (CO) and fronto-parietal networks (FPN), 
dorsal and ventral attention networks (DAN/VAN), and sen-
sory networks such as the visual network (Damoiseaux 
et al., 2006; Dworetsky et al., 2021; Seitzman et al., 2020).

The interactions within and between these functional 
brain networks can be quantified using resting-state 
functional connectivity (RSFC; i.e., the correlation of the 
fMRI activation time series between brain regions). 
Within-network connectivity refers to the coactivation of 
nodes in a given network and is relatively strong, whereas 
between-network connectivity refers to the relationship 
between nodes of different networks and is generally 
weaker and more sparse (Sporns & Betzel, 2016; Wig, 
2017). These measures can be further summarized as 
network (or system) segregation, which represents the 
relative balance of within- to between-network correla-
tion strengths across the brain (Chan et al., 2014, 2018; 
cf. modularity, Sporns & Betzel, 2016). Network segrega-
tion is an important property of brain organization that 
allows both specialization of function and cooperative 
activity; the brain needs to be moderately segregated in 
order to perform distinct functions efficiently, while 
remaining sufficiently integrated to communicate output 
across networks (Wig, 2017). The examination of network 
segregation provides insight into the brain’s higher order 
organization, complementing more focal analyses of spe-
cific network connectivity.

The organization of resting-state networks and their 
relationship with brain function change over the course of 
the human lifespan (Biswal et al., 2010). Organized RSFC 
emerges early in life and is refined during childhood and 
adolescence, though existing evidence of directional 
changes in segregation is mixed (Gao et  al., 2015; 
Grayson & Fair, 2017; Satterthwaite et al., 2013). Specific 
networks may show distinct patterns of functional con-
nectivity at different developmental stages that parallel 
sensorimotor or cognitive abilities (Grayson & Fair, 2017; 
Marek et al., 2016). On the other hand, during the course 
of healthy aging, lower network segregation is consis-
tently observed in older adults, corresponding to a de-
differentiation of the network, which is linked to worse 
cognitive functioning in multiple domains, including long-
term memory and executive function (Chan et al., 2014; 
Chong et  al., 2019; Geerligs et  al., 2015; Koen et  al., 
2020). Despite evidence of cognitive decline in aging, 
fewer studies have explored connectivity as a function of 
age-related changes in emotion processing.

1.1.  Valence bias, aging, and RSFC

In contrast to the effects observed for cognitive func-
tions, emotional functions and network organization may 

be relatively spared in aging (Mather, 2016; Nashiro et al., 
2017; Scheibe & Carstensen, 2010). Indeed, while cogni-
tive networks consistently show lower segregation, emo-
tion networks have shown maintained or even increased 
connectivity in later life (Cao et  al., 2014; Malagurski 
et al., 2020; Nashiro et al., 2017). Behaviorally, as individ-
uals age there is a shift toward positivity in emotional 
attention and memory, often paired with improvements in 
well-being (Mather, 2012; Mather & Carstensen, 2005). 
This positivity effect is also observed in one’s tendency to 
appraise ambiguously valenced stimuli (e.g., faces, 
scenes) as positive or negative (known as “valence bias,” 
Neta, 2024; Neta et al., 2009). Studies have shown that 
while valence bias is relatively negative in children and 
young adults (Neta & Whalen, 2010; Petro et al., 2018; 
Tottenham et  al., 2013), it becomes less negative and 
more positive in older adults (Neta & Tong, 2016; Petro, 
Basyouni, et  al., 2021; Shuster et  al., 2017). The initial 
negativity hypothesis of valence bias proposes that 
ambiguous stimuli are automatically interpreted as nega-
tive in younger individuals, and that positive interpreta-
tions require an effortful, regulatory mechanism to 
overcome this initial appraisal (Harp, Gross, et al., 2024; 
Neta & Whalen, 2010; Neta et  al., 2022; Pierce et  al., 
2023). In older adults, however, there appears to be a 
shift to default positivity, where positive interpretations 
can be generated more quickly with little regulatory con-
trol (Neta & Tong, 2016; Petro, Basyouni, et  al., 2021). 
Task-based fMRI evidence has demonstrated that posi-
tivity in younger adults recruits regions of the prefrontal 
cortex (PFC) that are involved in cognitive reappraisal, in 
line with a regulatory mechanism (Petro et  al., 2018; 
Pierce et al., 2023). Conversely, in older adults, positivity 
is associated with faster amygdala habituation in the 
absence of regulatory PFC activation, contributing evi-
dence that a default positivity allows for resolution of 
emotional ambiguity with minimal top-down control 
(Petro, Basyouni, et al., 2021).

When considering ambiguity processing during early 
development, task-based connectivity between the 
amygdala and ventromedial PFC correlates with valence 
bias in children ages 6 to 13 years old—stronger regula-
tion is associated with more positivity in children at a 
more advanced pubertal stage (Petro, Tottenham, et al., 
2021). We also recently demonstrated that in children 
ages 6 to 17 years old, valence bias could be predicted 
from whole-brain RSFC using support vector regression, 
as well as from CO and amygdala networks together 
(Harp, Nielsen, et  al., 2024). This study further showed 
that model prediction of valence bias was sensitive to the 
connectivity of the CO, FPN, Visual, and Subcortical net-
works. The CO network previously has been related to 
ambiguity processing (Neta, Nelson, et  al., 2017), 
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including in the valence bias task specifically (Pierce 
et al., 2023), providing performance reporting feedback 
(Gratton et  al., 2017) that can shape subsequent emo-
tional decision-making.

Collectively, these prior studies suggest that processing 
of emotional ambiguity in the valence bias task changes as 
individuals age, with differential contributions of emotion-
sensitive regions such as the amygdala and regulatory 
regions within the PFC. These behavioral differences are 
also evident in patterns of functional activity. Stronger 
interactions between control and emotion processing 
regions might result in lower segregation if these networks 
are frequently coactivated during affective processing. 
While prior work has found that greater segregation was 
associated with better cognitive performance (Chan et al., 
2014; Koen et al., 2020), in the emotion domain, relatively 
lower segregation (i.e., greater integration) might reflect 
more controlled processing that balances emotional reac-
tivity. Either greater between-network connectivity (e.g., 
PFC regulation of amygdala) or weaker within-network 
connectivity (e.g., among emotion sensitive regions) could 
reduce the overall segregation of emotion networks, result-
ing in more integrated cognitive-emotion processing and, 
potentially, a more positive valence bias. To date, however, 
the relationship between network segregation/RSFC and 
behavioral patterns in the valence bias task across the 
lifespan has not been examined. Such findings could 
inform our understanding of lifespan differences in valence 
bias and emotion processing more broadly.

1.2.  The current study

In the current work, we examined the relationship 
between RSFC, aging across the lifespan, and valence 
bias task performance. In a cross-sectional sample of 
healthy individuals aged 6 to 80 years old, we analyzed 
the effects of age on network segregation of 12 functional 
networks across the whole brain. We expected to repli-
cate previous reports of lower segregation in older adults, 
and to extend this finding to a broader age range that 
includes children and adolescents. Most importantly, we 
investigated the relationship between segregation and 
valence bias to determine which networks may contrib-
ute to individual differences in emotion task performance 
across the lifespan. Based on previous resting-state and 
task-based fMRI studies using the valence bias task 
(Harp, Nielsen, et  al., 2024; Petro et  al., 2018; Pierce 
et al., 2023), we predicted that segregation and connec-
tivity of the CO, FPN, Visual, and Reward networks may 
be critical to supporting task performance and/or sensi-
tive to age-related changes in performance. Stronger 
connectivity of these networks with each other or addi-
tional networks may support positive interpretations of 

emotional ambiguity, such that lower segregation is 
associated with more integrated cognitive-emotion pro-
cessing and a more positive bias. Given that valence bias 
has previously been related to mental health measures 
such as loneliness (Harp & Neta, 2023; Neta & Brock, 
2021) and stress (Brown et al., 2017), the current findings 
can advance our understanding of the brain mechanisms 
supporting individual differences in emotional health in 
both development and adult aging.

2.  METHODS

2.1.  Participants

Three hundred and forty-two participants were recruited 
from the Lincoln, Nebraska community and completed an 
initial pre-scanning session, including an assessment of 
valence bias. Participants had to be right-handed, have 
no history of neurological disorder, no current use of a 
psychotropic medication, and no MRI-incompatible metal 
implants. Of those who completed the first session, 12 
participants were excluded for inaccurate responses in 
the valence bias task (Mage = 17.08 years; see below) and 
were not invited back for the scanning session, 12 were 
excluded for failing to meet MRI compatibility criteria 
(Mage = 37.33), and 20 opted out of the study (Mage = 19.25). 
Of the 298 participants who returned for the scanning 
session, seven did not complete the resting-state scans 
(Mage = 12.14), 24 were excluded due to a poor alignment 
between the imaging data and the atlas space 
(Mage = 35.75), and 46 were excluded for having an inade-
quate amount of data retained after motion censoring 
(Mage = 20.89; described below). The final sample included 
221 participants (M(SD)age = 34.06 (21.06), range = 6–80; 
139 female/82 male; 179 White, 19 more than one race, 
11 Asian, 8 Black, 3 unknown race, 1 American Indian/
Alaskan Native; and 194 not Hispanic/Latino, 22 Hispanic/
Latino, 5 unknown ethnicity). All participants (and/or their 
legal guardian) confirmed understanding of the proce-
dures, provided written informed consent, and received 
compensation for their participation. All procedures were 
approved by the local institutional review board.

2.2.  Procedure

In a pre-scanning session, participants completed the 
valence bias task, followed by a series of questionnaires 
beyond the scope of the present report. As in previous 
work (Neta et al., 2009, 2013), the valence bias task con-
sisted of a two-alternative forced choice task in which 
images were categorized as either positive or negative 
and was administered in MouseTracker software (Freeman 
& Ambady, 2010). The task comprised four blocks (two 



4

J.E. Pierce, G.S. Wig, N.R. Harp et al.	 Imaging Neuroscience, Volume 2, 2024

faces, two scenes), each with 12 ambiguous and 12 
clearly valenced trials (6 positive, 6 negative), for a total of 
96 trials (48 ambiguous, 48 clearly valenced). The faces 
included 34 discrete identities taken from the NimStim (14 
identities; Tottenham et al., 2009) and Karolinska Directed 
Emotional Faces (20 identities; Lundqvist et  al., 1998) 
stimulus sets, displaying happy, angry, or surprised 
expressions. The scenes were selected from the Interna-
tional Affective Picture System (Bradley & Lang, 2007), 
and were previously validated as being emotionally 
ambiguous (Harp et  al., 2021; Neta et  al., 2013). The 
clearly positive and negative images were used as within-
subjects controls to ensure task comprehension and 
compliance (as in prior work; Harp et al., 2021; Neta et al., 
2019, 2022), and participants with accuracy below 60% 
were not invited back for the scanning session. Valence 
bias was calculated as the percentage of positive catego-
rizations for ambiguous faces and scenes.

Approximately 1 week after the initial session, eligible 
participants were invited to return for the scanning session. 
Functional scans included a passive face viewing task 
(Petro et al., 2018; Petro, Basyouni, et al., 2021), an emo-
tion regulation task (Pierce, Blair, et  al., 2022; Pierce, 
Haque, et al., 2022), and a resting-state scan, during which 
participants passively viewed a white crosshair on a black 
background. A subset of 63 children from the present study 
were also included in an alternate RSFC analysis using a 
different ROI set and modeling approach that focused on 
affect in development (Harp, Nielsen, et al., 2024).

2.3.  Image acquisition

Data were collected on a Siemens 3T Skyra scanner 
housed within the Center for Brain, Biology, and Behavior 
at University of Nebraska-Lincoln. Structural images were 
collected using a T1-weighted MP-RAGE sequence 
(TR = 2.2 s, TE = 3.37 ms, slices = 192 interleaved, 1 mm 
isotropic voxel size, FOV = 256 mm, flip angle = 7o, total 
acquisition time  =  5:07). Resting-state functional scans 
were collected using an EPI sequence (TR  =  1.0  s, 
TE = 30 ms, slices = 51, voxel size = 2.5 mm isotropic, 
matrix = 84 x 84 mm, FOV = 210 mm, flip angle = 60o, mul-
tiband factor = 3). Resting-state scans were collected over 
one to three runs for a total of approximately 15 minutes.

2.4.  Image preprocessing

Preprocessing steps included slice timing, correction for 
head movement within and across runs, and intensity 
normalization of the functional data via the T1-weighted 
scans. Each run was resampled in atlas space on an iso-
tropic 3  mm grid combining movement correction and 
atlas transformation in a single interpolation (Harp, 

Nielsen, et al., 2024; Nielsen et al., 2019; Shulman et al., 
2010). Structural and functional images were registered 
to a target atlas in Talairach space (Talairach & Tournoux, 
1988) created from MP-RAGE scans of thirteen 7- to 
9-year-old children and twelve 21- to 30-year-old adults 
scanned on a Siemens 3T MAGNETOM Trio scanner 
(TRIO_KY_NDC). After aligning the structural scans to the 
target atlas space, cortical reconstruction was completed 
in Freesurfer (Fischl, 2012).

2.5.  Functional connectivity processing

Functional connectivity processing was conducted using 
in-house MATLAB scripts (Gratton et  al., 2020; Nielsen 
et al., 2019; Power et al., 2012) and included demeaning 
and detrending of each functional run, regression of nui-
sance variables (i.e., global signal, cerebrospinal and 
white matter nuisance masks derived from Freesurfer, and 
six rigid-body motion parameters, motion derivatives, and 
Volterra expansion of motion estimate; Friston et  al., 
1996), frame censoring and interpolation of data within 
runs, a temporal band-pass filter (0.009 Hz < f < 0.08 Hz), 
and spatial smoothing (6  mm full width half maximum). 
Framewise displacement (FD) was calculated from pre-
processing realignment estimates and then low-pass fil-
tered to remove high-frequency noise (Gratton et  al., 
2020). Frames with greater than 0.2  mm FD were cen-
sored (removed) prior to analysis (Nielsen et  al., 2019; 
Power et al., 2014). After framewise censoring, data seg-
ments with less than five contiguous frames were 
removed, as were any functional runs with fewer than 50 
frames to ensure sufficient stability in the resting-state 
signal. Only participants with at least 800 remaining 
frames of resting data (13.3 minutes) were included in the 
analysis, and the first 800 frames (after motion exclusions) 
were selected from each participant to minimize the 
effects of data quantity on network measures (Han et al., 
2024). In other words, the earliest volumes that did not 
contain excessive movement were included until the 800-
frame limit was reached; later volumes were discarded. 
This cut-off was determined based on the distribution of 
retained frames in the current data (412–1,337 frames, 
median = 913) to balance retention of participants (82.8%) 
and retention of data within retained participants (84.4%).

2.6.  Regions of interest

RSFC time series were extracted from 300 whole-brain 
ROIs (5 mm radius; Seitzman et al., 2020). The time series 
from each ROI were correlated to produce a correlation 
matrix (Fig.  1), then normalized using a Fisher z-trans-
form. This set of ROIs consists of 14 functional networks: 
Somatomotor-Dorsal (SMd), Somatomotor-Lateral (SMl), 
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Cingulo-Opercular (CO), Auditory, Default Mode (DMN), 
Parietal Medial (PM), Visual, Fronto-Parietal (FPN), 
Salience (SAL), Ventral Attention (VAN), Dorsal Attention 
(DAN), Medial Temporal Lobe (MTL), Reward, and Unas-
signed. For network-level analyses, the Somatomotor-
Dorsal and Somatomotor-Lateral networks were 
combined into a single network and the unassigned ROIs 
were excluded, leaving 12 networks.

2.7.  Network (system) segregation

RSFC was analyzed according to the methods described 
by Chan et al. (2014) for measuring within- and between-
network functional connectivity (referred to here as just 
connectivity), which were combined into the single metric 
of network segregation. Briefly, within-network connec-
tivity was defined as the mean correlation (z-value) of all 
ROIs within a given network to each other, and between-
network connectivity was defined as the mean correla-
tion of all ROIs in a given network to all other ROIs in the 
brain (or to all ROIs in each other network for network-
level analyses). The segregation metric was defined as 
the difference in mean within- and mean between-
network correlation as a proportion of mean within-
network correlation (scripts available at https://gitlab​
.com​/wiglab​/system​-segregation​-and​-graph​-tools) and 
represents the functional specialization of the brain net-

work with respect to overall brain organization. As in prior 
work (Chan et  al., 2014, 2018; Zhang et  al., 2023), all 
(unthresholded) positive correlations were included in the 
analysis, while all negative correlations were set to zero, 
given that global signal regression may introduce spuri-
ous negative correlations (Murphy et al., 2009). All net-
works (regardless of number of ROIs) were given equal 
weighting in calculating overall segregation; segregation 
was not correlated with the number of ROIs within each 
network (r = .20, p = .53). Each network, therefore, had 
three RSFC metrics entered into the analyses: 1) between-
network connectivity, 2) within-network connectivity, and 
3) network segregation.

2.8.  Linear models

In the first analysis, we tested the relationship between 
age (standardized) and within-network connectivity, 
between-network connectivity, and segregation using 
linear models to identify linear or quadratic effects of 
age. The root mean square of FD per participant was 
regressed out of each RSFC measure to further control 
for any effects of motion (segregation and FD: r = -.45, 
p < .001; cf. FD as a covariate in Chan et al., 2014, 2018; 
Zhang et  al., 2023). One subject was identified as an 
extreme outlier for segregation and removed from this 
analysis. Next, we explored the relationship between age 

Fig. 1.  Average correlation matrix from all participants (n = 221) in 300 ROIs across 14 resting-state networks. On-
diagonal blocks represent within-network connectivity, and off-diagonal blocks represent between-network connectivity.

https://gitlab.com/wiglab/system-segregation-and-graph-tools
https://gitlab.com/wiglab/system-segregation-and-graph-tools
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Table 1.  Models predicting network measures from age.

Model B SE t-value p-value

Segregation (F(1, 218) = 41.11, p < .001, R2 = .159)
  Intercept −0.0004 0.062 −0.007 .994
  Age −0.400 0.062 −6.412 <.001**
Within-Network (F(1, 218) = 23.54, p < .001, R2 = .098)
  Intercept −0.0002 0.064 −0.003 .997
  Age −0.313 0.064 −4.852 <.001**
Between-Network (F(2, 217) = 4.03, p = .019, R2 = .036)
  Intercept 0.199 0.110 1.808 .072
  Age 0.183 0.074 2.494 .013*
  Age (quadratic) −0.200 0.088 −2.272 .024*

**p < .01, *p < .05.

and network measures for each individual network to 
determine if there were different patterns of maturation 
across the networks. p-Values were corrected using the 
false discovery rate (FDR) for the overall model fits to 
control for multiple comparisons across the 12 networks.

Secondly, linear models were fit predicting valence 
bias from segregation and, separately, from within-
network and between-network connectivity (controlled 
for FD). Due to previous findings of broad changes in 
connectivity across the brain during aging (Chan et al., 
2014; Geerligs et al., 2015; Nashiro et al., 2017), and an 
absence of evidence linking valence bias to patterns of 
large-scale connectivity in adults, we included all 12 
functional networks in this analysis to evaluate segrega-
tion changes in relation to valence bias across multiple 
brain networks. Standardized age was included as a 
covariate, given the known changes in valence bias 
across the lifespan (Neta & Tong, 2016; Petro, Basyouni, 
et al., 2021; Shuster et al., 2017). Based on the results of 
this initial analysis (see Results), follow-up analyses were 
conducted on the between-network connectivity of the 
DMN to determine which other networks were contribut-
ing to the observed segregation effects (within-network 
connectivity was non-significant). Connectivity between 
the DMN and each of the 11 other networks was entered 
into a model predicting valence bias, along with age. 
Augmented backward elimination (R package: abe; 
Dunkler et al., 2014) was used for stepwise selection of 
variables based on the Akaike information criterion (AIC). 
Next, given the wide age range in our sample, we tested 
age as a moderator of the effects of DMN connectivity 
with the remaining selected networks; any age interac-
tion that was not significant was not included in the final 
model. Network segregation and linear model analyses 
were conducted in R Statistical Software, version 4.3.1  
(R Core Team, 2023).

3.  RESULTS

3.1.  Segregation and age

Linear models predicting segregation and within-network 
connectivity exhibited significant negative linear effects 
of age, such that segregation and within-network con-
nectivity were lower in older participants. The linear 
model predicting between-network connectivity showed 
both a positive linear and negative quadratic effect of 
age, corresponding to an inverted U-shaped curve (Fig. 2; 
Table 1). Subsequently, the relationship between segre-
gation and age was examined for each of the 12 resting-
state networks separately. All networks exhibited 
significant negative linear effects of age on network seg-
regation, and the Auditory and Salience networks also 

showed a significant quadratic effect of age (Fig. 3; Sup-
plementary Table S1; for these effects separated by with-
in- and between-network connectivity, see Supplementary 
Tables S2 and S3, respectively).

3.2.  Valence bias and segregation

Next, the relationship between segregation in each brain 
network and performance on the valence bias task was 
assessed. Valence bias was calculated as the percent of 
positive responses to ambiguous faces and scenes, and 
ranged from 16.67 to 93.75 with a median of 52.08 
(SD = 19.06). Valence bias was positively correlated with 
age (rho = .256, p < .001, CI [.134, .379]), as expected, 
with older participants having a more positive valence 
bias (Fig. 4A). Given that age was associated with valence 
bias, it was included as a covariate in the linear models 
relating valence bias to segregation. Models for all net-
works were significant overall due to the age effects 
(Supplementary Table S4). Only in the DMN model (F(2, 
218) = 14.04, p < .001, R2 = .114), however, was the effect 
of segregation on valence bias significant, with lower 
segregation associated with a more positive bias (Fig. 4B). 
Models predicting valence bias from within- and between-
network connectivity were also analyzed (Supplementary 
Table S5): only the DMN showed a significant effect of 
between-network connectivity (F(3, 217) = 8.76, p < .001, 
R2 = .108), and no networks showed significant effects of 
within-network connectivity.

Given the significant effect of between-network con-
nectivity in the DMN model, we next explored which spe-
cific between-network connections were contributing to 
the relationship with valence bias. The initial model 
including all networks as predictors is shown in Supple-
mentary Table S6; predictors were automatically removed 
in a stepwise manner to minimize the AIC of the model. 
The final model (F(5, 215) = 8.424, p <  .001, R2 =  .164) 
included age, connectivity with the CO network, with the 
VAN network, and with the Reward network, and the 



7

J.E. Pierce, G.S. Wig, N.R. Harp et al.	 Imaging Neuroscience, Volume 2, 2024

Fig. 2.  Relationships between segregation, within-network, and between-network connectivity and age. Values are 
residuals after controlling for FD. Segregation and within-network connectivity showed a negative linear effect with age, 
whereas between-network connectivity showed an inverted-U quadratic effect with age.

Fig. 3.  Relationship between segregation (controlled for FD) and age for each brain network. Trendlines show the 
significant quadratic effects for the Auditory and Salience networks and negative linear effects for all networks.

Fig. 4.  (A) Positive relationship between valence bias and age (rho = .256): older participants tended to have a more 
positive valence bias than younger participants. (B) Negative relationship between valence bias (controlled for age) and 
segregation (controlled for FD) of the DMN: lower network segregation was associated with a more positive valence bias.
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Fig. 5.  (A) Locations of the ROIs in the DMN (red), CO (purple), Reward (tan), and VAN (teal) networks. (B) Schematic 
summarizing the model predicting valence bias from DMN connectivity with the CO, Reward, and VAN networks. (C) 
Main effect of DMN-CO between-network connectivity on valence bias residuals (with two outliers removed). Stronger 
connectivity between the DMN and CO networks was associated with a more positive valence bias. (D) Interaction effect 
of age and DMN-Reward between-network connectivity. For older participants (>39.26 years; solid red line), weaker 
connectivity between the DMN and Reward networks was associated with a more positive valence bias.

interaction between age and Reward connectivity 
(Table 2). Connectivity between DMN and CO had a sig-
nificant relationship with valence bias, such that stronger 
connectivity was associated with a more positive valence 
bias (p = .007). The effect of DMN and VAN connectivity 
was in a similar direction, but only reached trend-level 
significance (p  =  .053). The main effect of DMN and 
Reward connectivity was not significant, but its interac-
tion with age was significant. For participants at one SD 
above the mean age (55.12 years), the simple slope of 
DMN-Reward connectivity with valence bias was signifi-
cant (slope = -15.46, t = 2.615, p = .010); for participants 
at or younger than the mean age (34.06 years), this rela-
tionship was not significant (p > .05; Fig. 5). An analysis 

of the Johnson-Neyman interval indicated that for partic-
ipants older than 39.26  years, there was a significant 
effect (p <  .05), such that weaker connectivity between 
the DMN and Reward networks was associated with a 
more positive valence bias. Two potential outliers were 
evident in the DMN-CO connectivity values; the overall 
model (F(5, 213) = 7.536, p < .001, R2 = .150) and effects 
described above all remained significant after excluding 
these two participants.

4.  DISCUSSION

In this study, we examined RSFC within and between 12 
functional networks in a sample of 221 healthy individu-
als from 6 to 80 years old. Across the lifespan, network 
segregation and within-network connectivity decreased, 
whereas between-network connectivity showed an 
inverted U-shape. Participants also completed a behav-
ioral task assessing emotional judgments of ambiguous 
faces and scenes, yielding a measure of their tendency 
toward positive or negative appraisals, known as valence 
bias. As in previous work, valence bias was more nega-
tive in younger age and more positive in older age. 
Valence bias was negatively related to network segrega-
tion in the DMN, with contributions of the between-
network connectivity with the CO, Reward, and VAN 

Table 2.  Final model predicting valence bias from 
connectivity between DMN and individual networks.

Predictor B SE t-value p-value

Intercept 65.418 4.580 14.285 <.001**
Age 4.819 1.285 3.749 <.001**
DMN-CO 18.889 6.927 2.727 .007**
DMN-VAN 7.609 3.904 1.949 .053+

DMN-Reward −6.435 4.311 −1.493 .137
DMN-Reward*Age −9.029 4.218 −2.141 .033*

**p < .01, *p < .05, +p < .10.



9

J.E. Pierce, G.S. Wig, N.R. Harp et al.	 Imaging Neuroscience, Volume 2, 2024

networks. Specifically, a more positive valence bias was 
associated with lower segregation of the DMN, stronger 
connectivity between the DMN and both the CO and 
VAN, and, in older participants, weaker connectivity 
between the DMN and the Reward network. Collectively, 
the present findings confirm prior reports of reduced seg-
regation in aging and suggest that interactions, measured 
at rest, between the DMN, a control network (CO), an 
emotion processing network (Reward), and an attention 
network (VAN) support a more positive valence bias.

4.1.  Network segregation decreases across  
the lifespan

The analysis of network segregation and age replicated 
previously reported effects in adulthood (e.g., Chan et al., 
2014; Geerligs et al., 2015), with lower overall segrega-
tion and within-network connectivity exhibiting a trend 
toward de-differentiation in older participants. We also 
showed that this pattern extended to children as young 
as 6 years old, with only the Auditory and Salience net-
works showing a quadratic effect where segregation was 
flat or increased slightly during childhood. On the other 
hand, between-network connectivity for all networks 
combined showed an inverted U-shape across age, with 
the strongest between-network connectivity in young 
adults. Some prior work has found increasing segrega-
tion in cognitive networks in childhood, interpreted as a 
refinement of associative functions over development 
(Satterthwaite et al., 2013; Wig, 2017), while other studies 
(e.g., Marek et  al., 2016) showed effects similar to the 
present findings with decreased segregation from child-
hood into young adulthood. Motion artifacts or insuffi-
cient/differing amounts of data may have contributed to 
some previous findings (Grayson & Fair, 2017; Han et al., 
2024; Snyder, 2022), as children and older adults may 
have more difficulty lying still in the scanner for an 
extended time. Given the known impact of head motion 
on RSFC (e.g., Parkes et al., 2018; Power et al., 2015), 
here we applied rigorous corrections for motion, censor-
ing volumes for which the BOLD signal was likely con-
taminated by movement and matching the number of 
volumes that were analyzed for each participant. Even 
with these corrections, we still observed a correlation 
between movement and network segregation (greater FD 
was associated with lower segregation, even when 
accounting for age). FD, therefore, was also regressed 
out of network measures to account for any potential 
residual movement-related variance given the inclusion 
of children and older adults in our sample. As with other 
measures of RSFC, the sensitivity of segregation to head 
motion means age differences in movement may impact 
the results despite corrections during processing, and 

further research is necessary to corroborate the current 
pattern of network segregation in children.

4.2.  Valence bias and the default mode network

The default mode was the only network to show a rela-
tionship between segregation and valence bias, with 
lower segregation associated with greater positivity in 
judgments of ambiguity. Relatively lower segregation, or 
greater integration, of the DMN means that in individu-
als with the tendency to see things in a more positive 
light, this network might be more connected with other 
networks or less cohesive within itself, as compared to 
those who view things more negatively. Breaking down 
the segregation effect into within- and between-network 
connectivity indicated that it was driven by connections 
between the DMN and other networks, rather than con-
nections within the DMN. Such between-network con-
nections support the integration of different brain 
functions and allow for flexible responding under vary-
ing task demands (Wig, 2017). DMN activity is associ-
ated with functions, including self-referential processing 
and autobiographical thoughts (Raichle, 2015), and dis-
rupted RSFC of the DMN, particularly in medial PFC, is 
linked with emotion dysfunction (Greicius et al., 2007; 
Menon, 2011; Sheline et al., 2010). Lower segregation 
of this network in individuals with a more positive 
valence bias suggests a history of stronger interactions 
with other functional networks such that internally 
directed DMN functions may habitually be more inte-
grated with regions supporting affective control. These 
interactions could reflect greater sensitivity to or influ-
ence on brain functions, including emotion processing 
and regulation. The analysis of the specific between-
network correlations of the DMN offers further insight 
into these interactions.

Between-network connectivity in the DMN was further 
broken down to identify specific networks that were driv-
ing the effect on valence bias. Stronger connectivity 
between the DMN and CO networks was associated with 
a more positive valence bias. A prior study in young 
adults similarly found that more integration (lower segre-
gation) of the DMN with control networks was associated 
with greater optimism (Moser et  al., 2021, see also 
Yankouskaya et  al., 2022). This is also consistent with 
previous task-based work demonstrating a role for the 
CO network in response to ambiguity (Neta et al., 2014), 
and in particular, a regulatory role that supports decision-
making during the valence bias task (Harp, Nielsen, et al, 
2024, Neta et al., 2013; Pierce et al., 2023). Stronger con-
nectivity between these networks could reflect a ten-
dency to monitor and regulate ongoing self-referential 
thoughts, perhaps exploring alternate appraisals of daily 
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experiences that are more goal-congruent (i.e., positively 
valenced).

Connectivity between the DMN and VAN also showed 
a marginal effect in the same direction, with stronger con-
nectivity associated with more positivity. The VAN is typ-
ically associated with bottom-up reorienting of attention, 
including to emotional stimuli (Frank & Sabatinelli, 2012; 
Viviani, 2013; Vossel et  al., 2014), and its involvement 
here may indicate that more positive individuals habitu-
ally experience differential allocation of attention (cf. Neta 
& Dodd, 2018). For example, positive interpretations of 
emotional stimuli may involve negative features capturing 
attention less strongly than positive features (Neta, Tong, 
et al., 2017; Singh et al., 2020; Todd et al., 2012), thus 
minimizing the intensity of one’s negative affective 
response or ruminative thoughts. Stronger connectivity 
with the DMN could indicate that the VAN is more sensi-
tive to internal processing (Viviani, 2013; Wang et  al., 
2023; Whitfield-Gabrieli & Ford, 2012), perhaps including 
emotional reappraisals, than (negative) environmental 
cues (Harp, Gross, et  al., 2024; Todd et  al., 2012; 
Wadlinger & Isaacowitz, 2011), though this trend-level 
effect warrants further investigation.

Finally, we observed an effect on valence bias of con-
nectivity between the DMN and Reward networks. The 
Reward network includes the amygdala, striatum, and 
orbitofrontal regions involved in emotion processing 
(Seitzman et  al., 2020). Emotion-related structures and 
functions have been found to show less age-related 
decline than do cognitive functions, with a positivity 
effect in aging that is characterized by increased atten-
tion to and memory for positive emotions in older age 
(Mather, 2016; Scheibe & Carstensen, 2010; Teater & 
Chonody, 2020), and greater white matter integrity in 
frontal cortex (Viher et al., 2024). The interaction with age 
observed here indicated that the positivity effect in 
valence bias is associated with reduced connectivity 
between the DMN and emotion processing regions only 
for adults older than 39 years. This age-related effect is in 
the opposite direction of the overall segregation effect in 
the DMN and the DMN-CO connectivity described above, 
possibly reflecting differential contributions of regulatory 
versus emotion reactivity networks to DMN activity. This 
pattern of findings highlights the utility of probing the 
between- and within-network connectivity of systems 
rather than relying purely on the overall summary metric.

Older adults may be less reactive to (negative) emo-
tional stimuli or less likely to dwell upon negative memo-
ries (Mather, 2012; Scheibe & Carstensen, 2010), allowing 
them to more easily adopt a positive appraisal of ambig-
uous stimuli. Moreover, there is evidence that older adults 
use distraction (switching attention) more frequently than 
cognitively demanding emotion regulation strategies, 

such as reappraisal (Martins et al., 2015; Mather, 2016; 
Scheibe et al., 2015). Speculatively, these different emo-
tion processing tendencies could shape (or be shaped 
by) the connectivity between the DMN and Reward net-
works, further limiting the impact of negative stimuli on 
self-referential processing in more positive adults. Finally, 
it is worth noting that although research on aging often 
focuses on changes observed at more advanced ages 
(Mather, 2010), the present findings suggest that RSFC 
differences related to emotional positivity effects already 
emerge in middle-aged adults.

4.3.  Limitations

The current findings should be considered with respect 
to several limitations. First, the network segregation met-
ric only considered positive correlations, so negative cor-
relations between nodes (which can be influenced by 
preprocessing choices such as global signal regression) 
did not contribute to the results. While this approach 
allows for better estimation of network coactivation, it 
means that inverse connectivity, such as that character-
izing the downregulation of the amygdala by ventrome-
dial PFC in emotion processing (Petro, Tottenham, et al., 
2021; Sakaki et al., 2013), may be missed by the current 
approach. Differences in segregation should thus be 
interpreted as reflecting stronger versus weaker positive 
network connectivity, rather than negative correlations.

Secondly, the wide age range of participants in this 
sample means that anatomical changes across the lifes-
pan may not be fully accounted for by the atlas registration 
(but see Han et al., 2018). We used an atlas based on the 
brains of children and young adults, creating the possibility 
that the localization of ROIs in some older adults could be 
suboptimal. Thirdly, more children/younger participants 
were excluded based on their behavioral responses on the 
valence bias task (though this constituted only 3.5% of the 
initial sample). Although this task has been used in pediat-
ric samples with success (Petro, Tottenham, et al., 2021; 
Tottenham et al., 2013), it does include stimuli that were 
normed using adult participants, so it is possible that some 
children interpreted the emotional content differently than 
the adults did or simply could not fully understand the task 
instructions. Finally, our sample consisted of participants 
who predominantly identified their race as White/European 
American, limiting the generalizability of these findings to 
individuals of other racial and ethnic backgrounds.

4.4.  Future directions

The differences in network segregation observed in rela-
tion to valence bias have broader implications for how 
affective biases, such as those that may accompany 
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mental health disorders, correspond to disruptions in the 
brain’s large-scale functional connectivity (Menon, 2011; 
Schwartz et al., 2019; Sheline et al., 2010; Spreng et al., 
2020). A more negative valence bias has been related to 
increased loneliness (Harp & Neta, 2023), stress (Brown 
et al., 2017), anxiety (Park et al., 2016), and daily negative 
affect (Puccetti et al., 2023), while a more positive valence 
bias has been related to increased social connectedness 
(Neta & Brock, 2021). Prior work has also demonstrated 
that although valence bias is relatively stable within an 
individual over a period of 1–2 years (Harp et al., 2022), it 
is malleable: greater positivity was observed following an 
8-week mindfulness intervention (Harp et al., 2022) and 
cueing of cognitive reappraisal within a single session 
(Neta et al., 2022). Considered with the current results, 
this raises the possibility that a shift in valence bias within 
an individual that impacts well-being could be accompa-
nied by a reorganization of network RSFC. Future work 
could explore the relationship between valence bias, net-
work segregation, and mental health following positivity-
inducing interventions across the lifespan.

4.5.  Conclusion

The present study demonstrated that age and individual 
differences in valence bias were associated with differ-
ences in segregation of resting-state brain networks. 
Notably, stronger functional connectivity between the 
DMN and both the CO and VAN networks was related to 
a more positive valence bias, suggesting a potential reg-
ulatory influence on self-referential processing that 
shapes emotional appraisals. Furthermore, age moder-
ated an effect of DMN and Reward network connectivity 
on valence bias. In older participants (who tended to 
show greater positivity), weaker connectivity between 
these two networks was associated with a more positive 
valence bias, possibly indicating that a tendency for less 
emotional reactivity supports positivity. Collectively, 
these findings illustrate that emotional biases in the pro-
cessing of ambiguously valenced stimuli are supported 
by differences in the organization of the brain’s intrinsic 
functional networks, offering further insight into the 
mechanisms that may contribute to affective well-being 
or dysfunction across the lifespan.
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